

STAR Global Conference 2012 Noordwijk, March 20- 21, 2012

On the Performance Prediction of Automotive Cooling Fans and Coolant Pumps

Dr. Fabiano Bet Dr. Gerald Seider

Company Profile

INTEGRATED DESIGN ANALYSIS GmbH

Consulting- & Engineering Services

Simulation and Analysis of complex fluid flow and heat transfer systems for engineering and industrial applications

InDesA GmbH • Anton-Ditt-Bogen 27 • D-80939 München • Phone +49 (89) 552 7978-10 • Fax +49 (89) 552 7978-29 • www.InDesA.de

InDesA

INTEGRATED DESIGN ANALYSIS

Virtual Test Bench InDesA Virtual Test Facility Center

Cooling Fan Heat Exchanger Compressor **Coolant Pump Coolant Systems Cooling Pack Battery Pack Electronics** Facility Computing Cluster Supply

STAR-CCM+

GT-SUITE

Virtual Test Bench

INDESA

Test Bench:

High technical level/equipment Large amount of space Prototypes (high costs) Time Scheduling (low flexibility) Accuracy in planning Shortly unavailable after dismounting

Measurement of physical entity Restricted (Bench) Conditions

Virtual Test Bench:

High technical level/knowledge Computing resources CAD Designs (low costs) Short Time Scheduling (high flexibility) Supplementary analysis possible Shortly available every time

Simulation of virtual entity Easley upgrade to "real" operation

Indesa

ATED DESIGN ANALYSIS

Virtual Test Bench Geometry of Cooling Fan Test Bench

Flow space outlet Flow space inlet (air)

Geometry

 Fan is integrated in standardized frame within virtual test bench
3 simulation setups have been considered in order to investigate the influence of the fan on total pressure

Case Definition and Boundary Conditions

- 5 simulations for each geometric setup have been performed
- Rotational speed of fan varies from 2391 3055 rpm as the volumetric mass flow rate through the wind tunnel covers the range of 0.334 - 2.482 m³/s
- Total pressure is mass flow averaged at inlet and outlet surface planes of the virtual test bench

InDesA

Virtual Test Bench Fan Geometry and Baffle Position

Geometry

- 3 simulation setups have been considered:
- i) No obstacle is placed behind fanii) A baffle plate is placed200mm behind fan (as shown here)iii) A baffle plate is placed150mm behind fan

Mesh

Unstructured Polyhedral mesh
with wall Prism Layers
3.3 - 3.8 · 10⁶ Volume Cells

Virtual Test Bench Fan Characteristics

InDesA

Virtual Test Bench Results: Flow Field for Case 5

InDesA

INTEGRATED DESIGN ANALYSIS

Virtual Test Bench Results: Constrained Streamlines on Fan

	Volumetric Flow Rate	Rotation Rate	No Baffle Plate	Baffle Plate 200mm	Baffle Plate 150mm	Test Rig
Case	[m³ / s]	[rpm]	[Pa]	[Pa]	[Pa]	[Pa]
1	0.334	2391	334	341	342	420
2	0.912	2535	206	189	186	260
3	1.478	2736	33	-2	-30	0
4	1.972	2859	-161	-227	-297	-420
5	2.482	3055	-424	-551	-665	-1000

Constrained streamlines on the front of the fan indicates a severe stall of flow in particular in cases of low fan efficiency (e.g. case 1)

In cases of higher fan efficiency, the constrained streamlines show less stall (e.g. case 2)

Virtual Test Bench Results: Flow Field

InDesA

INTEGRATED DESIGN ANALYSIS

Virtual Test Bench Comparison between methods

Volume Flow Rate[m³ / s]

	Volumetric Flow Rate	Rotation Rate	No Baffle Plate (steady-state MRF-method, normal MRF)	No Baffle Plate (steady-state MRF-method, large MRF	No Baffle Plate (transient case, sliding meshes)
Case	[m³ / s]	[rpm]	[Pa]	[Pa]	[Pa]
1	0.334	2391	334	352	358
2	0.912	2535	206	240	226
3	1.478	2736	33	50	31
4	1.972	2859	-161	-151	-145
5	2.482	3055	-424	-425	-440

InDesA

INTEGRATED DESIGN ANALYSIS

Virtual Test Bench Fan characteristics

2500.0

	Volumetric Flow Rate	Rotation Rate	No Baffle Plate (steady-state MRF-method)	No Baffle Plate (transient case, sliding meshes)	Test Rig
Case	[m³ / s]	[rpm]	[Pa]	[Pa]	[Pa]
1	0.334	2391	334	358	420
2	0.912	2535	206	226	260
3	1.478	2736	33	31	0
4	1.972	2859	-161	-145	-420
5	2.482	3055	-424	-440	-1000

Total Pressure (Pa) -500<u>.00</u>100.00700.001300.01900.0

Time [s]

>Unsteady calculations with sliding meshes delivers fluctuating characteristics for the pressure rise; corresponding pressure-values are averaged here.

>The averaged pressure rise with sliding meshes compared to the steady-state calculations is larger in case of pressure build up (case 1).

>In the transit case (case 3) the results of both methods are similar.

>In case of an overblown fan (case 5) the pressure drop with sliding meshes slightly increases.

>In conclusion, the much more costly method with a truly moving fan provides slightly different fan characteristics than the steady-state MRF-method.

>Results with sliding meshes are supposably of higher quality, especially in case of pressure build-up.

Virtual Test Bench Water Pump Test Bench

InDesA

INTEGRATED DESIGN ANALYSIS

Virtual Test Bench Pump Operating Field

Virtual Test Bench Physics and Boundary Conditions

Density: $\rho = 1312.82 \cdot 0.7215 \cdot T$ Viscosity: $\nu = 554.68 \cdot e^{\langle 0.0365T \rangle}$ Thermal conductivity: $\lambda = 0.6388 - 1.221 \cdot 10^{-3} \cdot T + 1 \cdot 10^{-6} \cdot T^2$

InDesA

INTEGRATED DESIGN ANALYSIS

Virtual Test Bench Characteristic Curves

Virtual Test Bench Cavitation

0

0

100

200

400

300

Angle [° deg]

500

600

48,8%

700

InDesA

INTEGRATED DESIGN ANALYSIS

Virtual Test Bench

www.InDesA.de

Thank you for your attention.

InDesA GmbH • Anton-Ditt-Bogen 27 • D-80939 München • Phone +49 (89) 552 7978-10 • Fax +49 (89) 552 7978-29 • www.InDesA.de