

Virtual Flow and Thermal Performance Prediction for Automotive Accessory Units and their Integration into Underhood CFD Flow Analysis with Multi Thermal Systems

Dr. Gerald Seider Dr. Fabiano Bet

Coventry, 16 May, 2013

Company Profile

INTEGRATED DESIGN ANALYSIS GmbH

Consulting, Engineering Services & Virtual Test Center

Simulation and Analysis of complex fluid flow and heat transfer systems for engineering and industrial applications

Virtual Performance Testing for automotive accessory units

3D CFD/CHT Analysis

GT-SUITE 1D System Analysis

InDesA

RATED DESIGN ANALYSIS

Virtual Testing for Multi Thermal Systems Overview

- 1. Introduction to the concept of multi thermal systems simulation (MTSS)
- 2. Virtual bench testing at InDesA / Classification
- **Cooling Fans**
- **Coolant Pumps**
- **EGR Cooler**
- **3. Conclusion with respect to the integration of test** bench results into MTSS

InDesA

ATED DESIGN ANALYSIS

Virtual Testing for Multi Thermal Systems CFD Flow Analysis with Multi Thermal Systems

thermal systems:

- underhood air flow
- coolant circuit
- engine oil circuit
- transmission oil circuit
- engine intake air /exhaust
- engine structure
- exhaust system structure

thermal transport:

convection conduction radiation

thermal inertia

transient analysis:

- thermal soak
- race track drive cycles
- engine warm-up

InDesA

Virtual Testing for Multi Thermal Systems CFD Flow Analysis with Multi Thermal Systems

heat sources:

- combustion
- friction
- electrical losses

heat transfer:

- radiators
- heat exchangers
- engine structure

powering convection:

- ram pressure
- coolant fans
- water pumps
- engine oil pump
- transmission oil pump
- engine pistons
- compressor

radiating heat:

- exhaust manifold
- exhaust pipes
- turbo charger

reflecting radiation:

heat shields

nes/

Virtual Testing for Multi Thermal Systems CFD Flow Analysis with Multi Thermal Systems

Transient simulation with multi thermal systems is manageable in <u>one</u> simulation model (*Star-CCM+*) but must be backed up by ...

1D system simulation to predict drive cycle behavior *(GT-SUITE)*

to manage transient boundary conditions. (vehicle speed, engine load & speed, gear, frictional losses, combustion, water pump speed and control, etc.)

3D virtual bench testing of accessory units

to ensure simulation quality at a reasonable geometrical resolution. (water pump, oil pump, cooling fans, heat exchangers, etc.)

InDesA

INTEGRATED DESIGN ANALYSIS

Virtual Testing for Multi Thermal Systems InDesA's Virtual Test Bench Classification

Type B

- isolated component in isolated test environment
- no interaction with other components

AR-CCM+

Example: EGR cooler module

 interaction with other components

AR-CCM+

Example: Two-chamber test cell for cooling fans

Type C

 interaction with other components

> Example: Water pump assembly

InDesA

INTEGRATED DESIGN ANALYSI

Virtual Testing for Multi Thermal Systems 2-Chamber Test Cell for Cooling Fans

fan overblown - 'high vehicle speed'

fan design operation - 'low vehicle speed'

Virtual Testing for Multi Thermal Systems 2-Chamber Test Cell for Cooling Fans

In a two chamber test cell a baffle plate downstream of the fan has almost no impact on fan performance for low vehicle speeds.

Is that true for a realistic underhood environment?

InDesA

INTEGRATED DESIGN ANALYSIS

Virtual Testing for Multi Thermal Systems Underhood Flow Tunnel for Cooling Fan Testing

InDesA has defined a standardized **underhood-flow tunnel**

to account for flow deflection at walls of the engine compartment

InDesA

RATED DESIGN ANALYSIS

Virtual Testing for Multi Thermal Systems 2-Chamber Test Cell vs. Underhood-Flow Tunnel

fan overblown - 'high vehicle speed'

fan design operation - 'low vehicle speed'

DesA

RATED DESIGN ANALYSIS

Virtual Testing for Multi Thermal Systems 2-Chamber Test Cell vs. Underhood-Flow Tunnel

Fan Performance

2-chamber test cell and underhood flow tunnel predict same fan performance and small difference for the force on the baffle plate.

InDesA

INTEGRATED DESIGN ANALYSIS

Virtual Testing for Multi Thermal Systems InDesA's Virtual Test Bench Classification

Type B

- isolated component in isolated test environment
- no interaction with other components

Example: EGR cooler module

 interaction with other components

AR-CCM+

Example: Two-chamber test cell for cooling fans

- unique test environment
- interaction with other components

Example: Water pump assembly

STAR-CCM+

InDesA

Virtual Testing for Multi Thermal Systems Type C Test Bench for Water Pumps

Desl

Virtual Testing for Multi Thermal Systems Open vs. Closed System Simulation

Vapor pressure must be monitored at impeller!

At the onset of cavitation the simulation methodology must be changed for the impeller from MRF to true rotation and from one to two phase flow (VOF).

InDesA

INTEGRATED DESIGN ANALYSIS

Virtual Testing for Multi Thermal Systems InDesA's Virtual Test Bench Classification

- isolated component in isolated test environment
- no interaction with other components

AR-CCM+

Example: EGR cooler module

Type B

- standardized test environment
- interaction with other components

AR-CCM+

Example: Two-chamber test cell for cooling fans

Type C

- unique test environment
- interaction with other components

Example: Water pump assembly

InDesA

Virtual Testing for Multi Thermal Systems Type A Test Bench for an EGR Cooling Module

- Thermal Fluid/Structure Coupling
- Full details of pipes or fin/plates
- EGR valve cooling and flow leakage at by-pass flap included

Additional Boundary Conditions

- Flap position for bypass-flowEGR valve
- position

InDesA

ATED DESIGN ANALYSIS

Virtual Testing for Multi Thermal Systems Test Bench Results for an EGR Cooler

Coolant

- temperatures
- pressure loss
- onset of boiling
- volume flow rates
- flow uniformity

Exhaust

- outlet temperature
- pressure loss
- force on flap
- flow leakage

Structure

- temperatures
- esp. valve seat
- heat transfer

⇒ heat transfer for arbitrary operating conditions

For multi thermal systems simulation the methodology should be changed to dual-stream heat exchanger based on the Nusselt Correlation

DesA

ATED DESIGN ANALYSIS

Virtual Testing for Multi Thermal Systems Conclusion

Virtual bench testing for accessory units is essential to manage multi thermal systems simulation (MTSS).

Sub-models for accessory units which power thermal convection and control thermal management can be tested and verified before being integrated into larger systems.

Virtual testing allows to find best practice methodology for the application in MTSS with respect to

- accuracy
- mesh resolution and interfaces
- numerical solver
- convergence
- physical modeling

Thank you for your attention.

InDesA GmbH • Carl-Zeiss-Ring 19a • D-85737 Ismaning • Phone +49 (89) 552 7978-10 • Fax +49 (89) 552 7978-29 • www.InDesA.de